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Contrary to the main conclusion of Embs et al. �Phys. Rev. E 73, 036302 �2006��, we demonstrate with
amplitude correction factors that the predictions of the magnetization model proposed by Shliomis �Sov. Phys.
JETP 34, 1291 �1972�� are well consistent with the experimental data for weakly nonequilibrium states and
that the model proposed by Shliomis �Phys. Rev. E 64, 063501 �2001�� is valid even far from equilibrium. A
model on the basis of the weak-field magnetization equation of Müller and Liu �Phys. Res. E 64, 061405
�2001�� with a “structure” modification is also shown to reproduce a wide range of experimental data. Our
statement is confirmed by a more exact insight into the hydrodynamic problem of rotating ferrofluids.
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Shliomis �1� �Sh72� postulated a ferrohydrodynamic mag-
netization equation

dm

dt
+ m � � =

meq − m

�
, �1�

where d /dt is the material derivative, m is the magnetization
vector, meq is the equilibrium magnetization vector, � is the
angular velocity vector, and � is the relaxation time. The
ferrofluid was assumed to be incompressible and noncon-
ducting. Martsenyuk et al. �2� �MRSh� later proposed an-
other equation derived microscopically from the Fokker-
Planck �FP� equation �3,4�

dm

dt
+ m � � =

m„hl · �h − hl�…
��hl�2

−
hl � �m � h�

A��l���hl�2
, �2�

where

A��l� =
2L��l�

�l − L��l� − �lL
2��l�

.

Here, h is the internal magnetic field vector, hl is the “local
equilibrium” or “effective” field vector, L is the Langevin
function, and �l is the Langevin argument of the local equi-
librium field strength �a dimensionless field strength�. Tse-
bers �5,6� performed a numerical simulation of magnetic mo-
ment dynamics and indicated that the MRSh model using the
effective-field method �EFM� proposed by Leontovich �7�
describes perfectly the magnetization in wide ranges of �0
and ���, where �0 is the Langevin argument of the applied
stationary uniform magnetic field strength and �� is the fluid
vorticity. Shliomis et al. �8� made the same conclusion by
comparing the results of tangential magnetostress under the
EFM-based MRSh model with those obtained by numerical
integration of the FP equation. In this work, the Sh72 model
was justified for weakly nonequilibrium magnetization states
�i.e., ���→0�. Recently, many authors have proposed modi-
fications to obtain a more proper form than the Sh72 model
or a simpler form than the MRSh model. Felderhof �9,10�

�Feld� showed that irreversible thermodynamics in combina-
tion with the Maxwell equations leads to the equation

dm

dt
+ m � � = �H�h − hl� , �3�

where �H is the Feld relaxation rate. Shliomis �11� �Sh01�
later indicated that the Feld model leads to anomalous vis-
cosity results and further revised Eq. �3� to have the form

dhl

dt
+ hl � � =

h − hl

�
. �4�

Comparing with the viscosity predictions of the Sh72 and
MRSh models, Shliomis �12� showed that the new magneti-
zation equation turns out to be valid even far from equilib-
rium and concluded that it should be recommended for fur-
ther application. At almost the same time, Müller and Liu
�13� �ML� proposed a new set of ferrohydrodynamic equa-
tions divided into two parts: structure and coefficients. Their
magnetization equation for the weak-field case is

dm

dt
+ m � �� = ��h − hl� , �5�

where �� is the flow vorticity vector, related to the flow ve-
locity vector v by �� =��v /2, and � is the ML relaxation
rate. Comparing with the experimental results of the trans-
verse magnetization of a ferrofluid in a rotating cylinder �ro-
tating ferrofluid� for a wide range of �� � with a fixed small
value of �0, Embs et al. �14� showed that the weak-field ML
model with proper coefficient setting must be preferred. To
our surprise, they also showed that the Sh01 model leads to
strong disagreement with their measurements and that the
Sh72 model is not valid even for weakly nonequilibrium
states. Below, we argue the reduced forms of magnetization
equations shown in their work and draw different conclu-
sions from our findings.

Let r, �, and z denote the usual cylindrical polar coordi-
nates. Consider the same experimental setup. A cylinder of
radius R rotates with the angular velocity vector �
= �0,0 ,	� in the presence of an applied stationary uniform*ckchen@mail.ncku.edu.tw
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magnetic field vector h0 oriented in the perpendicular direc-
tion of �. The linear and angular momentum balance equa-
tions are, respectively,



dv

dt
= − �p* + �� + ���2v + 2��� � �� , �6�


j
d�

dt
= − 4��� − �� � + m � h , �7�

where p* is a magnetohydrodynamic pressure �15,16�; 
 is
the density; � is the vortex viscosity, related to the shear
viscosity � and the particle volume fraction  by �
=3� /2; and j is the moment of inertia per unit mass. The
internal magnetic field vector h and the magnetization m
within a ferrofluid could be related to each other via h=h0
−nm, where n is the demagnetizing factor �n=1 /2 in the
experimental setup�. The hydrodynamic equations �6� and �7�
admit a steady solution in the form

v = „0,u��r�,0…, p* = p*�r� ,

� = „0,0,�z�r�… ,

h = �hr,h�,0�, m = �mr,m�,0� , �8�

and thus reduce to

Dp* = 

u�

2

r
,

�� + ��DD*u� − 2�D�z = 0,

4��z − 2�D*u� = mrh� − m�hr, �9�

where D=d /dr and D*=d /dr+1 /r. Embs et al. considered
the rotating ferrofluid as a rigid body with velocity

u��r� = 	r . �10�

Substituting Eq. �10� into the linear momentum balance
shown in Eq. �9� gives

�z�r� = A . �11�

By using the no-slip boundary condition �z�R�=	, the un-
known constant can be obtained as A=	. Substituting Eqs.
�10� and �11� into the angular momentum balance shown in
�9� gives

mrh� − m�hr = 0. �12�

It means that the magnetization vector m is always parallel
to the internal magnetic field vector h, i.e., the magnetic
torque is neglected �m�h=0�. This is contradictory to the
actual magnetic behavior in such a ferrohydrodynamic sys-
tem.

Now we get a more exact insight into the hydrodynamic
problem of rotating ferrofluids. Integrating Eq. �9� and con-
sidering the limiting case D�m�h�→0 �small magnetic-
torque gradient�, we obtain

u��r� = Br + C/r ,

�z�r� = B +
mrh� − m�hr

4�
,

p*�r� = 
� u�
2

r
dr . �13�

Assuming that the fluid adheres to the cylinder with the con-
ditions

u��R� = 	R, �z�R� = 	 �14�

gives

B = 	 −
mrh� − m�hr

4�
, C =

mrh� − m�hr

4�
R2. �15�

Thus, the angular velocity vector is

� = � �16�

and the fluid vorticity vector is

�� = � −
m � h

4�
. �17�

It should be noted that the conditions �14� have been con-
firmed by Stokes �17� for the dynamics of fluids with micro-
structure.

The model equations for the magnetization in situations
where m and h are spatially and temporally constant but not
parallel to each other include either the magnetization vector
m toward the equilibrium magnetization vector meq�h�
=��h�h or the local equilibrium field vector hl�m�=F�m�m
toward the internal field h. By using the relations �16� and
�17� and the setting �=1 /F� �18� and �H=�0 /� �19�, where
the initial susceptibility �0=��h→0�, the five well-known
model equations �1�–�5� can be written in the common form

m � �� + �3m � h0� = �1�h0 − �2m� , �18�

with the following coefficients:

Sh72: �1 =
�

�
, �2 =

1

�
+ n, �3 = 0

�the Debye model of Embs et al.�;

MRSh: �1 =
1

A��l�F�
, �2 = F + n, �3 = 0;

Feld: �1 =
�0

�
, �2 = F + n, �3 = 0

�the ML�F� model of Embs et al.�;

Sh01: �1 =
1

F�
, �2 = F + n, �3 = 0

�the ML�S� model of Embs et al.�;
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ML: �1 =
1

F�
, �2 = F + n, �3 = −

1

4�
.

Embs et al. has shown with amplitude correction factors of
the order of 0.1 that the shapes of the curves for the trans-
verse field strength hy

sensor versus the angular velocity 	 are
somewhat better reproduced by the Debye model �the
present Sh72 model� and the ML�S� model �the present Sh01
model� and that only the ML�S� model reproduces well the
curve for large values of 	. Leschhorn et al. �20� showed
that these corrections result from the polydispersity of ferro-
fluids. We may, therefore, conclude with amplitude correc-
tion factors that the Sh72 model is able to reproduce the
experimental data for weakly nonequilibrium states and that
the Sh01 model is valid even for strong nonequilibrium
states. In addition, the coefficient �3 has been shown by
Embs et al. to have a strong effect on the discrepancy in the
theoretical and experimental comparison. A “structure”
modification for the weak-field magnetization equation of
Müller and Liu �13� should, therefore, be done. We write Eq.
�5� in a proper “structure”:

dm

dt
+ m � � = ��h − hl� . �19�

For rotating ferrofluids, it can be written in the common form
�18� with the same coefficients of the Sh01 model, i.e., its
predictions are also well consistent with a wide range of
experimental data. In Fig. 1, we plot possible approximations

of the measurements of Embs et al. It is clear from the plot
that the ML model is impertinent for the experiment. The
MRSh model seems to be the best approximation, and the
WC �the present� model provides another way of estimating
the transverse magnetization.
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FIG. 1. Comparison of the experimental data of the transverse
local equilibrium field strength measured by the sensor at the ap-
plied magnetic field h0=30 kA /m with the numerical results ac-
cording to different theoretical models. The fit parameters used for
the Sh72, Feld, and Sh01 models are shown in Table I of Embs et
al. �14�, and those used for the MRSh, Weng-Chen �WC�, and ML
models are the same as the Sh01 model.
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